Прибор для проверки электролитических конденсаторов МАСТЕРКИТ NM8032 — Умная электроника

Причиной поломки электротехники часто является выход из строя конденсатора. Для проведения ремонта нужно знать, как проверить конденсатор мультиметром. Из инструментов еще потребуется паяльник, поскольку деталь придется выпаивать из платы.

как проверить конденсатор мультиметром

Полярные конденсаторы легко проверить в режиме омметра. Если сопротивление детали бесконечно большое (горит единица в левом углу), это означает, что произошел обрыв.

Тестирование емкости конденсатора

Электролитический конденсатор со временем высыхает, и его емкость изменяется. Чтобы ее измерить, нужен специальный прибор. Как проверить электролитический конденсатор мультиметром? Прибор подключается к детали, и переключателем выбирается необходимый предел измерения.

как проверить электролитический конденсатор мультиметром

При появлении на индикаторе сигнала о перегрузке, инструмент переключается на меньшую точность. Аналогично измеряется емкость неполярных конденсаторов.

Визуальный контроль конденсаторов

Неисправности возникают из-за механических повреждений, перегрева, скачков напряжения и др. Чаще всего наблюдается выход из строя конденсатора по причине пробоя. Его можно увидеть по следующим дефектам: потемнению, вздутию или трещинам. У отечественных деталей при вздутии может произойти небольшой взрыв. Зарубежные конденсаторы защищены от него крестовидной прорезью на торце детали, где происходит небольшое вздутие, различимое глазом. Деталь с данной неисправностью может иметь нормальный вид, но при этом быть неработоспособной.

Для проверки элемент выпаивается из платы, иначе протестировать его невозможно. Проверку можно сделать по карте сопротивлений на плате, но для конкретной модели она не всегда имеется под рукой, даже при сервисном обслуживании.

Мастера, ремонтирующие радиоаппаратуру, хорошо знают, как часто в отказе аппаратуры виноват электролитический конденсатор. Причем неисправность конденсатора заключается не в потере емкости, а в увеличении активного паразитного сопротивления и обычный измеритель емкости не позволяет выявить такую неисправность.

Эта статья знакомит с несложным и недорогим прибором, позволяющим достаточно достоверно проверить качество электролитических конденсаторов без их демонтажа. Прибор можно самостоятельно собрать из деталей предлагаемого набора Он позволяет измерять ESR — «последовательное эквивалентное сопротивление» конденсаторов (ESR — Equivalent Series Resistance). Дополнительно прибор позволяет измерять сопротивление низкоомных резисторов, контактных сопротивлений реле и переключателей. Прибор имеет два диапазона измерений: 1:1 и 1:10. Выбор диапазона осуществляется переключателем.

Немного информации для радиолюбителей, начинающих заниматься ремонтом радиоаппаратуры. Существует обширный класс неисправностей радиоэлектронной аппаратуры, связанный с отказами электролитических конденсаторов. Электролитические конденсаторы — это сложные электрохимические устройства, содержащие жидкий активный электролит, в них применяется точечная сварка и клепка химически несовместимых металлов. Изготовление электролитических конденсаторов требует строгого соблюдения технологической дисциплины, так как малейшее ее нарушение ведет к отказам компонентов Причем коварство этих отказов заключается в том, что их часто невозможно обнаружить при входном контроле, они проявляются в процессе эксплуатации радиоаппаратуры. А так как электролитические конденсаторы используются чаще всего как фильтры питания и переходные конденсаторы, происходит постепенное ухудшение качества работы аппаратуры. Увеличивается количество помех на экране телевизора, усилители начинают все больше «фонить», звук в них постепенно теряет басы, а управляющие микроконтроллеры все чаще начинают давать сбои. Потребители обычно такие дефекты даже не относят к поломкам, а считают это результатом старения аппаратуры. Но даже когда отказ конденсатора привел к полной неработоспособности устройства, замена отказавшего конденсатора не гарантирует качественного ремонта. Ведь велика вероятность того, что и другие конденсаторы в устройстве уже находятся на грани отказа, и это приведет к повторным ремонтам. По этой причине некоторые мастера предпочитают в случае отказа одного из электролитических конденсаторов заменять на плате все конденсаторы на новые. Способ конечно надежный, но весьма трудоемкий и дорогостоящий. Имея же прибор для внутрисхемной диагностики электролитических конденсаторов, можно быстро проверить все конденсаторы и заменить только низкокачественные.

Диагностика электролитических конденсаторов основывается на принципе: «сопротивление конденсатора должно быть бесконечно большим на постоянном токе и предельно малым на высокой частоте». Сопротивление конденсатора на постоянном токе легко проверить при помощи омметра, работающего на постоянном токе. Для проверки сопротивления конденсаторов на высокой частоте существуют специальные приборы — измерители последовательного эквивалентного сопротивления (ESR). Известные приборы с цифровой индикацией имеют высокую стоимость. Цифровая индикация, необходимая при точных измерениях, оказывается неудобной для быстрых качественных оценок. К тому же конструкция щупов, несмотря на использование цифровой коррекции, не позволяет проводить правильные измерения озчень малых сопротивлений. Это связано с тем, что приборы измеряет модуль комплексного сопротивления цепи между своими клеммами, но она состоит из суммы сопротивления щупов и сопротивления Тестируемого конденсатора. Теоретически можно вычесть сопротивление щупов из суммарного сопротивления цепи и получить точное знамение сопротивления конденсатора. Но на практике комплексное сопротивление щупов в процессе измерений меняется из-за нестабильности контакта в клеммах прибора, изменения индуктивности прово-дов при изменении их взаимного расположения и влияния на них окружающих предметов. Все это не позволяет правильно оценивать сверхмалые сопротивления.

Описание прибора

Прибор, который можно собрать из набора, работает на принципе тестирования конденсатора переменным током фиксированной величины. В этом случае падение напряжения на конденсаторе прямо пропорционально модулю его комплексного сопротивления. Такой прибор реагирует не только на увеличенное внутреннее сопротивление, но и на потерю конденсатором емкости. Функционально прибор состоит из трех основных узлов: генератора прямоугольных импульсов, прецизионного преобразователя переменного напряжения в постоянное напряжение и блока индикации {Рис. 3).

Генератор прямоугольных импульсов выполнен на логической интегральной схеме DA1. состоящей из шести логических элементов НЕ. Преобразователь переменного напряжения в постоянное напряжение выполнен на специализированной интегральной микросхеме DA2. Микросхема имеет широкий диапазон линейного преобразования переменного в постоянное напряжение (40 дБ). Блок индикации выполнен на микросхеме специализированного усилителя индикации DA3. В приборе использован аналоговый индикатор на 10 светодиодах с логарифмической шкалой. Шкала измерителя нелинейная. Она сжата в области больших сопротивлений и растянута в области малых сопротивлений. Такая шкала удобна для считывания показаний и обеспечивает наглядный отсчет в широком диапазоне измерений. Для дополнительного расширения диапазона измерений в прибор введен переключатель диапазонов.

Другая особенность прибора — это использование четырехпроводной схемы подключения измерительных щупов. При такой схеме к измеряемому конденсатору двумя проводами подводится сигнал от генератора, а двумя другими проводами к тому же конденсатору подключается измерительная цепь. Между собой эти две пары проводов соединяются только на конденсаторе. При такой схеме подключения сопротивление соединительных проводов не влияет на результаты изменений, что позволило надежно регистрировать сопротивления порядка 0,05 Ом.

Основные технические характеристики прибора демонстрируют возможности его применения.

Технические характеристики

Напряжение питания [В]……………………………………………………….6 (4 элемента AAA)

Ток потребления, не более [мА]……………………………………………. 100

Щиапазон измерения малых сопротивлений [Ом]………………………0.1—3

Диапазон измерения больших сопротивлений [Ом]……………………1.0—30

Индикация…………………………………………………………………………10 светодиодов

Формат индикации…………………………………«светящийся столб»/«бегущая точка»

Габаритные размеры корпуса [мм]…………………………………………120x70x20

Принцип действия

Прибор выполнен в корпусе BOX-G080 (Рис. 1). В корпусе закреплена печатная плата и кассета на 4 батареи размера AAA (Рис. 2).

Принцип действия прибора заключается в следующем. На делитель напряжения, образованный образцовым резистором и проверяемым конденсатором, подается переменное напряжение с генератора прямоугольных импульсов. Конденсатор включен в нижнее плечо делителя. С выхода делителя переменное напряжение пропорциональное ESR измеряемого конденсатора поступает на вход преобразователя переменного напряжения в постоянное напряжение. С выхода преобразователя постоянное напряжение поступает на блок индикации, который преобразует поступившее на его вход постоянное напряжение в соответствующее ему количество светящихся светодиодов. Таким образом, измеряемое значение ESR в приборе преобразуется в количество «горящих» светодиодов.

Рассмотрим электрическую схему устройства. На микросхеме DA1 (HEF4049BP) выполнен генератор прямоугольных импульсов, частота которого определяется элементами времязадающей цепи Rl, C1 (- 80 кГц). С выхода генератора (выводы 2, 4, 6, 11, 15 DA1) прямоугольные импульсы поступают на конденсатор СЗ и далее на делитель напряжения, образованный резистором R3/R2 и испытуемым конденсатором С. Переключатель SW1 позволяет в качестве верхнего плеча делителя выбрать резистор R3 или R2. Так как значения измеряемых сопротивлений много меньше номиналов токоограничивающих резисторов, можно считать, что конденсатор тестируется фиксированным током. Напряжение на конденсаторе будет определяться его емкостным сопротивлением и ESR, то есть будет прямо пропорционально его комплексному сопротивлению.

Переменное напряжение с испытуемого конденсатора через конденсатор С4 поступает на вход (вывод 5 DA2) микросхемы преобразователя КР157ДА1. Микросхема представляет собой сдвоенный линейный детектор с динамическим диапазоном более 50 дБ. Здесь эта микросхема использована в нестандартном включении. Одна ее половина включена в режиме линейного усилителя переменного тока с коэффициентом усиления около 10, а другая в режиме линейного детектора. Такое включение позволило увеличить чувствительность прибора без увеличения постоянного смещения на выходе детектора. Микросхема с высокой точностью преобразует переменное напряжение на ее входе в пропорциональное ему постоянное напряжение на ее выходе. Поскольку входное напряжение, снимаемое с конденсатора С, пропорционально измеряемому значению ESR, напряжение на выходе преобразователя будет также пропорционально ESR.

С выхода преобразователя (вывод 12 DA2), постоянное напряжение поступает на сглаживающий фильтр R9, С7 и далее на вход логарифмического индикатора на микросхеме LM3915 (вывод 5 DA3). Значения сигнала с шагом 3 дБ отображаются линейкой из 10 светодиодов. Использование логарифмического индикатора позволило обеспечить широкий диапазон измеряемых значений при относительно небольшом числе светодиодов индикации. Особенностью включения микросхемы является то, что опорное напряжение на вывод 6 микросхемы подается не от внутреннего стабилизатора, а с делителя R10, R12, подключенного непосредственно к шине питания. При таком включении при снижении напряжения питания повышается чувствительность индикатора. Одновременно при этом снижается выходное напряжение генератора на микросхеме DA1. Оба эти эффекта компенсируют друг друга, и поэтому удается обеспечить правильные показания прибора при изменении напряжения питания без использования дополнительных стабилизаторов. Яркость свечения светодиодов индикатора задается резистором R11. Итак, микросхема DA3 преобразовала входное постоянное напряжение в соответствующее количество светящихся светодиодов, подключенных к ее выходам. Суммарный потребляемый прибором ток определяется главным образом током «потребления светодиодов индикации. На плате предусмотрена съемная перемычка J1, определяющая режим работы индикатора. При установленной перемычке индикатор работает в режиме «светящийся столб», а при снятой — в более экономичном режиме «бегущая точка», при котором снижается ток потребления прибора. Последний режим будет полезен при питании прибора от батарей.

Диоды D1 и D2 предназначены для защиты прибора при подключении его к неразряженным конденсаторам. С той же целью рекомендуется использовать конденсаторы СЗ и С4 на рабочее напряжение не менее 250 В.

Монтаж и настройка

Приборы подобного вида являются достаточно сложными радиоэлектронными устройствами. Однако используя элементы из набора NM8032 (Табл. 1), можно собрать устройство всего за 30…40 мин. В наборе имеется все, что нужно для сборки прибора, включая подробную инструкцию, печатную плату, корпус и даже наклейку на лицевую панель. Расположение элементов на плате показано на Рис. 4.

Рис.4 Расположение элементов

Табл. 1 Перечень элементов

Позиция Характеристика Наименование и/или примечание Кол.
DA1 HEF4049BP Микросхема 1
DA2 К157ДА1 Микросхема 1
DA3 LM3915 Микросхема 1
D1, D2 1N4148 Диод 2
HL1…HL6 LED 0 3 мм Светодиод зеленого свечения 6
HL7…HL8 LED 0 3 мм Светодиод желтого свечения 2
HL9…HL10 LED 0 3 мм Светодиод красного свечения 2
SW1, SW2 Переключатель SS-8 2
R1 20кОм Красный, черный, оранжевый*
R2 2кОм Красный, черный, красный*
R3 110 Ом Коричневый, коричневый, коричневый*
R4, R7, R8 10 кОм Коричневый, черный, оранжевый* 3
R5 5.6 кОм Зеленый, голубой, красный*
R6 56 кОм Зеленый, голубой, оранжевый*
R9 30 кОм Оранжевый, черный, оранжевый*
R10 4.7 кОм Желтый, фиолетовый, красный*
R11 1.2 кОм Коричневый, красный, красный*
R12 3 кОм Оранжевый, черный, красный*
С1 330 пФ 331 — маркировка
С2, СЗ, С4, С6, С7 0.22 мкФ 224 — маркировка
С5 10 мкФ, 16…50 В
С8 100 мкФ, 10…50 В
J1 PLS-40 Штыревой разъем 2-контактный
J1 Съемная перемычка «джампер»
1.5 Ом Эталонный резистор (коричневый, зеленый, золотистый*) Возможна замена на резистор 2 Ом (красный, черный, золотистый*) 1
«Крокодил» Зажим с изолятором 2
МГТФ-0,12 Провод 1 м
Отсек для элементов питания 4хААА 1
BOX-G080 120x70x20 мм Корпус 1
А8032 63×63 мм Печатная плата 1

Сборка прибора производится в следующей последовательности:

• срежьте у печатной платы два угла по пунктирным линиям;

• временно установите печатную плату в корпус и, используя ее как трафарет, просверлите для светодиодов 10 отверстий 03 мм;

• извлеките печатную плату из корпуса и смонтируйте на ней все радиодетали, за исключением светодиодов. Конденсаторы С5 и С8 установмие горизонтально (Рис. 5а);

• впаяйте провода щупов в контактные отверстия 1, 2 и 3, 4. Перевейте между собой с шагом 5…8 мм провода, подходящие к контактам 1 и 3. Подпаяйте к зажимам типа «крокодил» провода, подходящие к контактам 1,3 и 2, 4. Провода должны соединяться между собой непосредственно на зажимах;

• припаяйте светодиоды согласно Рис. 5б;

• подпаяйте кассету питания;

• приклейте на двусторонний скотч кассету с батареями (может потребоваться удаление неиспользуемых стоек в корпусе);

• проверьте правильность монтажа;

• закрепите шнур питания, как показано на Рис. 4, сделайте в корпусе отверстия для переключателей и проводов щупов и соберите корпус.

Правильно собранный прибор, как правило, настройки не требует. После окончания сборки можно включить питание и проверить работоспособность прибора при помощи низкоомного безиндуктивного резистора 1.5 Ом. При подключении такого резистора к щупам прибора, он должен показывать правильное значение номинала. При необходимости чувствительность прибора на шкале «xl» можно подстроить, изменяя номинал резистора R2, а на шкале «х10» — изменяя номинал резистора R3.

Калибровочная шкала прибора приведена в Табл. 2. Эти данные отражают также соответствие числа горящих светодиодов величине SR испытуемого конденсатора.

Таблица 2. Калибровочная шкала прибора

Порядковый номер светодиода Сопротивление, Ом
1:10 1:1
HL1 0,1 1,3
HL2 0,2 1,9
HL3 0,3 2,7
HL4 0,4 3,8
HL5 0,5 5,3
HL6 0,8 7,5
HL7 1,1 10,6
HL8 1,5 15
HL9 2,1 21,2
HL10 3 30

Пользоваться прибором еще проще, чем собрать его из набора. Для проведения измерений надо подсоединить измерительные щупы прибора к выводам проверяемого конденсатора. Если нажать кнопку SW2, то по количеству загоревшихся светодиодов, пользуясь наклейкой на Лицевой панели корпуса, можно определить ESR испытуемого конденсатора (Табл. 2). В Табл. 3 для справки даны максимально допустимые значения ESR для новых электролитических конденсаторов.

Таблица 3. Максимально допустимые значения ESR для новых электролитических конденсаторов в зависимости от их номинала и рабочего напряжения

Номинал, мкФ Напряжение,В
10 16 25 35 63 100 250
1 мкФ 14 16 18 20
2,2 мкФ 6 8 10 10 10
4,7 мкФ 15 7,5 4,2 2,3 5
10 мкФ 8 5,3 3,2 2,4 3,0 2,5
22 мкФ 5,4 3,6 2,1 1,5 1,5 1,5 1
47 мкФ 2,2 1,6 1,2 0,68 0,56 0,7 0,8
100 мкФ 1,2 0,7 0,32 0,32 0,3 0,15 0,8
220 мкФ 0,6 0,33 0,23 0,17 0,16 0,09 0,5
470 мкФ 0,24 0,18 0,12 0,09 0,09 0,05 0,3
1000 мкФ 0,12 0,09 0,08 0,07 0,05 0,05
4700 мкФ 0,23 0,2 0,12 0,08 0,04
10000 мкФ 0,12 0,08 0,06 0,04

Внимание!

При работе с прибором ремонтируемое устройство должно быть выключено из сети и конденсаторы в нем разряжены!

Некоторые замечания по использованию прибора

Если в своей работе вы чаще пользуетесь прибором для внутрисхемной проверки конденсаторов, то удобнее сделать щупы в виде вилки из двух острых иголок с возможностью изменения расстояния между ними в пределах 3…20 мм.

Практика использования прибора показала, что большинство отказов электролитических конденсаторов успешно диагностируется с помощью описанного прибора. Но некоторые виды отказов, такие как повышенные токи утечки и короткие замыкания, им не обнаруживаются. Кроме того, исправные конденсаторы различных номиналов и на разные напряжения имеют разные допустимые значения ESR. Поэтому, чтобы избежать ошибок, при принятии окончательного решения рекомендуется сравнить результаты измерений с числами, приведенными в Табл. 3. Эта таблица ориентировочная, реальные значения в ней зависят от производителя, типа конденсаторов и даже от допустимого емпературного диапазона. В процессе практической работы ее можно будет откорректировать.

При измерении низкоомных проволочных резисторов нужно помнить, что измерение производится на переменном токе и на результат влияет индуктивность резисторов. Это не является недостатком прибора, а наоборот, позволяет более точно оценить возможность использования резисторов в высокочастотных схемах — импульсных преобразователях, усилителях, ШИМ-регуляторах.

Прибор поможет подобрать электролитические конденсаторы для высококачественных УНЧ по минимальному ESR. Сегодня существуют рекомендации по использованию в таких усилителях конденсаторов только от некоторых ведущих производителей. Использование прибора позволит подбирать конденсаторы по реальным характеристикам, а не ориентироваться на рекламируемый бренд. Имеется и еще одно, довольно необычное, применение данного срибора — он позволяет оценить состояние батарей и аккумуляторов. дело в том, что батареи, так же как и конденсаторы, имеют свое внут-еннее сопротивление, которое составляет у свежих батарей величину >,1…5 Ом в зависимости от типа и емкости батареи. При выработке батареи или аккумулятора это сопротивление существенно возрастает. подбирая в аккумуляторную батарею элементы с близкими значениями ESR, можно существенно увеличить срок ее службы.

Печатную плату

Источники: Радиохобби

NM8032 — Прибор для проверки электролитических конденсаторов

Диагностика неисправностей неполярных конденсаторов

У неполярного конденсатора замеряется сопротивление. Если оно имеет величину меньше 2 мОм, здесь налицо неисправность (утечка или пробой). Исправная деталь обычно показывает сопротивление более 2 мОм или бесконечность. При замерах нельзя касаться щупов руками, поскольку будет измеряться сопротивление тела.

Тестирование на пробой также можно проводить в режиме проверки диодов.

Обрыв у конденсаторов малой емкости косвенным методом обнаружить невозможно. Как проверить емкость конденсатора мультиметром в подобной ситуации? Здесь нужен прибор, где есть необходимая функция.

как проверить емкость конденсатора мультиметром

Проверка электролитических конденсаторов

Существуют небольшие отличия, как проверить конденсатор мультиметром в режиме омметра. Полярные конденсаторы проверяются аналогично, но порог измерения у них составляет 100 кОм. Как только устройство зарядится и показание перевалит за эту величину, здесь можно судить о том, что деталь исправна.

Важно! Перед тем как проверить работоспособность конденсатора мультиметром, его следует разрядить путем соединения выводов. Высоковольтные детали из блоков питания подключаются на активную нагрузку, например через лампу накаливания. Если заряд оставить, можно испортить прибор или получить ощутимый разряд, дотронувшись до выводов руками.

К конденсатору подсоединяются щупы, показывающие рост сопротивления у исправной детали. Черный щуп с отрицательной полярностью подключается к минусовому проводнику, а красный — к положительному. На поверхности электролитического конденсатора минус обозначается белой полосой на боковой стороне.

как проверить работоспособность конденсатора мультиметром

На стрелочных приборах подобную проверку производить удобней, поскольку по скорости перемещения стрелки можно судить о величине емкости. Можно протестировать исправные детали с известными показателями и составить таблицу, по которой приблизительно определяется емкость по показаниям скорости падения напряжения.

После того, как конденсатор зарядится при тестировании (обычно до 3 В), на нем замеряется величина напряжения. Если она составляет 1 В или меньше, деталь нужно заменить, поскольку она не зарядилась. После проверки исправный конденсатор припаивается обратно, но его следует предварительно разрядить, закоротив ножки щупом.

Гарантия на электролитический конденсатор означает, что в течение заданного времени величина его емкости не выйдет за указанные пределы, обычно не превышающие 20 %. Когда срок службы превышен, деталь остается работоспособной, но величина емкости у нее другая, и ее необходимо контролировать. Как проверить конденсатор мультиметром в этом случае? Здесь емкость измеряют специальным прибором.

Обрыв трудно обнаружить с помощью омметра. Его признаком служит отсутствие изменения показаний в режиме омметра.

Схема принципиальная прибора

Изначально прибор был собран с самодельными щупами – пинцетом, имеющим широкие губки, неудобным при измерении на платах, с плотным монтажом. Затем присмотрел себе на Али экспресс щупы — пинцет для измерения SMD, подключаемые к мультиметру. Заказав пинцет, провод был безжалостно укорочен, для того чтобы точность не сильно пострадала при измерении, из-за длины проводов щупов. Не забывайте, там счет идет на миллиОмы.

Сначала прибор у меня подключался щупами к мультиметру и был выполнен в виде приставки, но постепенно надоело крутить каждый раз ручку мультиметра, вырабатывая тем самым ресурс переключений. Мне тогда как раз товарищ подарил мультиметр, в связи с тем что свой я временно попалил на неразрядившемся электролитическом конденсаторе. Впоследствии прибор был восстановлен, резисторы были перепаяны, а этот мультиметр, у него были отломлены разъемы для подключения щупов на плате, и были кем-то брошены перемычки, но точность измерений уже была не та.

ESR метр открытый корпус

Но для моих целей погрешность 1-2 процента ничего не решала и решил сделать прибор полностью автономным. Для этого скрепил корпус мультиметра и корпус ESR метра на винты, и сделал для большего удобства коммутацию одновременного включения, встроенного мультиметра и ESR метра с помощью выключателя на две группы контактов. Соединения мультиметра и ESR метра, ранее осуществляемые с помощью щупов, были сделаны проводами, внутри соединенных корпусов.

Прибор испытатель конденсаторов — внешний вид

Как показала практика, времени на приведение прибора в боевую готовность, а затем, после проведения измерений, отключения, стало уходить существенно меньше, а соответственно повысилось удобство использования. Из дальнейших доработок планируемых в данном приборе — это перевести его на аккумуляторное питание, от Li-ion аккумулятора от телефона, с возможностью подзарядки от платы адаптера заряда через встроенное Mini USB гнездо, от любого зарядного устройства от смартфона с возможностью подключения USB кабеля.

Как показала практика, ранее мною уже был переделан на аккумуляторное питание с помощью аналогичного способа Транзистор тестер Т4, также имеющий, как и ESR метр, высокое потребление благодаря установленному в нем графическому дисплею. Ощущения от переделки остались только положительные. За полгода заряжал всего один раз. В устройстве был установлен повышающий DC-DC преобразователь превращающий 3.7 вольта на выходе аккумулятора в 9 вольт, необходимые для работы прибора.

Макетная плата ESR метра

В данном случае, в моем приборе будет двойное преобразование напряжения: сначала с 3.7 вольта в 9 вольт, хотя возможно я выставлю и минимально допустимое для входа стабилизатора 7805 CV напряжение 7.5 вольт, от данного стабилизатора сейчас запитана схема прибора. Сам прибор, как можно видеть на фото, изначально питается от батареи Крона, которая, как известно, имеет относительно небольшую емкость.

Напряжение питания данной микросхемы позволяет питать ее напрямую от 9 вольт, но дело в том, что по мере разряда батареи заметил, что показания при измерении начинают потихоньку уплывать. Для борьбы с этим, и был установлен стабилизатор 7805, который, как известно, выдает у нас стабильные 5 вольт на выходе.

Выключатель с защитой от случайных включений

Также в связи с тем, что прибор приходится часто носить с собой в дипломате, на ремонты на выездах, и уже были случаи самопроизвольного включения выключателя, и соответственно высаживании батареи Крона в ноль, что сейчас, при коммутации данным выключателем 2 линий питания, мультиметра и самого прибора, было бы уже более нежелательным, так как в таком случае, придется покупать уже две кроны, стоимостью 45 рублей.

Коммутация выключателем на 2 группы контактов

Решено было просто приклеить на термоклей, по краям выключателя, два самореза, от крепления кулера, в компьютерном блоке питания. Микросхема, применяемая в приборе, широко распространенная, и довольно дешевая, я приобретал ее, по стоимости, всего порядка 15-20 рублей.

Весь прибор, обошелся мне, с учетом бесплатного мультиметра, щупов – пинцета с Али экспресс, стоимостью 100 рублей, и стоимости деталей для сборки прибора, и батареи крона, всего ушло порядка 150 рублей, итого все необходимое обошлось в смешную сумму 250 рублей.

Пинцет для измерения конденсаторов на плате

Что окупилось уже с применением прибора в ремонтах давно и многократно. Конечно кто нибудь, имеющий возможность и желание приобрести ESR micro, может сказать сейчас, зачем мне эти неудобства, каждый раз переводить из миллиВольт, в миллиОмы, хотя это и не требуется, как я уже выше писал, если на покупном приборе я могу сразу видеть, уже готовые значения.

Понравилась статья? Поделиться с друзьями: