Доработка тестера электрооборудования своими руками

Всем Доброго времени суток! Вот наконец-то и я обзавелся всем знакомым ESR GM328A тестером, который является очень полезным помощником в радиоэлектронике. Много не хочу о нем рассказывать, информацию о нем предостаточно, речь пойдет немного о другом, а именно о его корпусе!

К сожалению, производитель не комплектует корпусом свой прибор, его нужно докупать отдельно, что делать крайне мне не хотелось, поэтому я изготовил его сам, что для этого мне понадобилось, я сейчас расскажу и покажу.

Аппаратная часть

Принцип работы: ответная часть представляет из себя набор сопротивлений различных номиналов. Измерим их. Зная их номиналы и распайку ответной части, мы можем точно выяснить, как кроссирован кабель. Ниже представлена схема устройства (все иллюстрации кликабельны). Конкретные номиналы сопротивлений выбраны скорее с учетом наличия в магазине, чем осознанно, хотя получился кусочек ряда Фибоначчи.

Сердцем схемы является микроконтроллер ATMega16. Почему именно он? Спор «AVR vs PIC» есть типичный холивар, поэтому скажу просто: моим произволом пусть будет AVR. А из всей их линейки Mega16 самый дешевый кристалл, имеющий на борту АЦП на 8 каналов. Усложнять схему коммутаторами аналоговых сигналов мне откровенно не хотелось. Немаловажный плюс: эту модель можно купить даже в моем замкадье, где на весь город один магазин электронных комплектующих с ценами по 150-500% от Москвы.

Порт A микроконтроллера — это входы АЦП, на порту B у нас ISP и пара служебных функций, порт C используем для формирования тестовых сигналов, ну а порт D — для общения с пользователем посредством HD44780-совместимого дисплея.

Питаем схему от батарейки типа «Крона», через стабилизатор LP2950, DA1 по схеме. Почему не ШИМ, а обычный линейный стабилизатор, пусть и low-dropout? Ток потребления невелик, на одной батарейке я провел все тестирование и отладку схемы, запустил уже пару реальных объектов по полсотни портов — пока не разрядилась. А вот высокочастотные помехи, которые есть спутник любого ШИМа, могут снизить точность работы АЦП. Усложнять схему, опять же, не хочется. Почему именно LP2950? Он был в магазине.

Входные цепи защитим с помощью супрессоров VD1.1 — VD1.8, я взял 1,5КЕ6,8СА. От попадания в 220В они, конечно, не спасут, а вот 60В с какой-нибудь телефонной линии погасить вполне смогут.

Цепочка VD2 — R4 служит для обнаружения разряда батареи. На стабилитроне падает 5,1В, Таким образом, когда напряжение батареи упадет ниже 6В, на PB2 появится лог. 0. Тут по уму нужен бы триггер Шмитта, но не нашлось.

Информацию выводим с помощью HD44780-совместимого дисплея, мне попался WH-1604A-YYH-CT#. Схема подключения типовая и пояснений не требует. Стоит сказать только о номинале сопротивления R5, задающего яркость подсветки. Чем больше номинал, тем дольше будет жить батарейка — вся остальная схема потребляет менее 5 мА, основной потребитель именно подсветка дисплея. Но если переусердствовать, в темноте ничего не увидишь на экране. Я остановился на 100 Ом.

Прозвонка проводов из лампочки и батарейки

Для того чтобы собрать устройство для прозвонки проводов и кабелей не обязательно иметь какие либо познания в электронике или радиотехнике. Не нужно разбираться в диодах, резисторах или конденсаторах. Сегодня я покажу, как сделать прозвонку для проводов

из обычной батарейки и лампочки.

Итак, потребность в таком приборе у меня возникла при расключении распределительных коробок. То есть нужно было определить откуда и куда какой провод идет.

Конечно, когда в схеме два три провода то определить направление линий в коробке не составит труда, но согласитесь если проводка выполнена десятками направлений выполнить такую работу крайне не просто.

Однажды меня попросили собрать распредкоробки. То есть ситуация была такой, когда люди наняли электриков для выполнения монтажа электропроводки. Эти электрики часть работы сделали, взяли за нее деньги и куда-то пропали.

Большую часть работы они конечно сделали, а именно проложили провода, завели все концы в подрозетники и распредкоробки, ну и так по мелочи, установили точечные светильники . На этом вся их работа закончилась.

Оставалось только установить розетки, выключатели соединить провода в распределительных коробках, для чего меня и вызвали. Заказчик бился в панике и попросил меня закончить все дела с электрикой как можно скорее, чтобы все наконец то заработало.

В распределительные коробки заходило по 8-10 проводов в разных направлениях и определить какой куда идет не так и просто особенно если ты не выполнял разводку проводов. Вот здесь и стала, необходимость в таком устройстве как прозвонка проводов

.

Это прибор, который состоит из лампочки, батарейки, щупов и соединительных проводов между ними.

Лампочка на напряжение 6 Вольт. Изначально батарейка была установлена крона на 9 Вольт, но со временем она подсела и я в ее корпус установил четыре обычных пальчиковых батарейки на 1.5 Вольт каждая и соединил их последовательно. То есть в сумме они также дают 6 Вольт.

Соединительные провода между ними самые обычные, тонкие, гибкие. Здесь очень важно чтобы их длина была достаточной для прозвонки проводов на длинных дистанциях.

Для удобства измерений на один конец щупа установил зажим типа «крокодильчик».

Это удобно в том плане когда, например коробки находится в разных комнатах и для того чтобы прозвонить кабель крепим «крокодил» в одной коробке, идем в другую и проверяем. То есть можно справиться самому с таким работами.

Прозвонка многожильного кабеля мультиметром

Мультиметр – это несложный прибор, который должен выполнять как минимум такие измерения: величин постоянного и переменного электрического напряжения и тока и значение электрического сопротивления.

Для прозвонки проводов и кабелей

используется функция проверки сопротивления. Если точнее, то в этом процессе интересует не величина сопротивления, а его наличие или отсутствие, показывающее состояние проверяемой цепи.

Перед проведением работ прибор переключается в режим измерения сопротивления в самом низком диапазоне значений. Большинство моделей мультиметров при наличии цепи могут выдавать звуковой сигнал, что значительно повышает удобство работы с прибором.

Прозвонка жил кабеля

или проводов производится следующим образом:

  1. если концы проводов находятся на незначительном расстоянии друг от друга, то достаточно к ним подсоединить щупы прибора и произвести измерение;
  2. при значительной протяженности исследуемого участка необходимо на одном конце кабеля накоротко замкнуть (соединить между собой) все жилы, а прозвонку проводов производить с другого конца последовательным подсоединением прибора к каждой паре проводников.

Если прибор вообще не выдает никаких показаний, то варианта два: либо кабель или провод «перебит» полностью, либо ошибочно производится измерение сопротивления не той цепи.

Не путать с тем когда на дисплее отображается ноль и когда на дисплее вообще нет ни каких цифр. Когда отображается ноль значит цепь замкнута но сопротивление цепи настолько малое что показания близки к нулю (например при прозвонке коротких проводов

). А когда на дисплее вообще ни чего не отображается, тогда нет замкнутой цепи (либо несоответствие жил провода, либо обрыв в самом проводе.)

Любителям сделать все своими руками предлагается простой тестер на основе микроамперметра М2027-М1, у которого диапазон измерения 0-300 мкА, внутреннее сопротивление 3000 Ом, класс точности 1,0.

Программная часть

Для написания программы я использовал среду AVR Studio 4, язык C. Ниже я опишу алгоритм работы, а вот код не покажу, и тому есть причины. Во-первых, он несколько ужасен (картинка с лошадью, блюющей радугой). Во-вторых, раз уж это DIY, то реализацию ниже описанных алгоритмов не грех и самому написать — а то что же это за DIY такое? Ну а в-третьих, если писать не хочется, то в приложениях откомпилированный .hex присутствует.

Описывать стандартные процедуры типа работы с АЦП, реализации обмена с HD44780-совместимым дисплеем и тому подобные очевидные вещи смысла не вижу. Все давно сказано до меня.

Работа тестера делится на несколько этапов, которые повторяются циклически.

Этап 1. Начальные проверки

  • проверим, не подключено ли к линии какое-либо активное оборудование. Все управляющие линии (порт C, напомню) переводим в Hi-Z состояние, измеряем напряжение на всех линиях. Они должны быть околонулевыми. В противном случае мы понимаем, что с другой стороны провода подключено что угодно, но не наша ответная часть, и дальше продолжать смысла не имеет. Зато имеет смысл сообщить пользователю, что «на линии есть напряжение!».
  • проверим уровень сигнала на PB2. Если там 0, то батарея разряжена. Сообщим о неполадке пользователю, если все ОК — идем далее.

Принципы работы тестера

С основного рабочего компонента, которым является мультивибратор, снимают переменный ток, который по своей амплитуде примерно равен тому, который подаётся источником питания. В качестве конденсирующего элемента подойдёт любой, выше 3.7 В, например на 16 или 25 В.

Естественно, что с разомкнутой цепью светодиоды не загораются. При замыкании цепи и прохождении тока по цепи загораются светодиоды. Всё просто.

Таким приборчиком можно очень быстро и качественно проверить любой элемент на работоспособность или цепь на разрыв в ней. Очень удобно для использования в домашних условиях, особенно не особо хорошо подготовленным человеком. Тестер транзисторов своими руками – что может быть проще?

Собирается такое устройство либо с применением простой печатной платы или же способом навесного монтирования. Также в область применения входит возможность определения “плюса” и “минуса”, когда вам не известно, где они у исследуемого элемента. Для использования в качестве батареи можно использовать 2-3 батарейки AAA для минимизации размера устройства.

Второй способ изготовления компактного тестера для использования в автомобиле. У такого прибора будет буквально 2 главные рабочие функции – возможность показания напряжения “на массе” и наличие в цепи 12 В. Причём, всё это будет доступно буквально при присоединении одного проводка к сети машины.

Что понадобится для создания такого функционального приспособления:

  • обычный медицинский шприц на 5 см3;
  • батареи LR-44 в количестве 4 штук;
  • два маленьких светодиодных элемента с резисторным компонентом;
  • маленький кусочек стальной проволочки;
  • проводок с зажимом на его конечной части.

Фото процесса

Внимание! Автору статьи при рождении вырезали художественное чувство, как будущему инженеру не нужное. Ценителям незаваленных горизонтов, композиции кадра и всякого прочего баланса белого просьба на этом месте прекратить чтение и перейти сразу к комментариям, во избежание получения серьезных душевных травм.

Готовая плата. Сверлим, паяем, промываем спиртом (у кого рука поднимется — этиловым, лично я мыл изопропиловым). После отладки покрываем лаком для защиты от коррозии.

Upd.

По просьбам хабражителей таки выкладываю исходник. Можно взять тут.

ЧАСТЬ 3. Профессиональные тестеры для локализации повреждений с измерением длины кабеля (метод TDR)

Этот раздел посвящён профессиональным кабельным тестерам с технологией рефлектометрии, которые многие уже используют, а еще больше специалистов — пока только хотят. Такие тестеры облегчают и ускоряют работу, помогают найти любое повреждение кабеля и даже измеряют расстояние до короткого замыкания (некоторые модели отображают только конец кабеля, где оно произошло). Правда, полнофункциональный прибор от хорошего производителя стоит немало. Для сравнения, простые устройства, тестирующие витую пару, о которых мы говорили в самом начале, обойдутся примерно в $30–50, а вот профессиональные «потянут» уже на $400–800.

Почему такая разница и за что мы платим? Стоимость оправдана широкими возможностями оборудования. А вот необходимость обладать этими возможностями зависит только от поставленных задач. Нет нужды рассказывать, что для простой проверки патч-кордов профессиональные тестеры будут хороши, но избыточны по функционалу.

Рассмотрим возможности кабельных тестеров для измерения длины кабеля и расстояния до короткого замыкания (TDR) на примере двух приборов. Softing CableMaster 600 и Greenlee NetCat Pro NC-500. Они могут проверять витую пару всех категорий с разъемом RJ45, телефонные и коаксиальные кабели.

Сразу обращаешь внимание на комфорт просмотра результатов проверки. Все пары наглядно отображаются на одном экране, и мы можем либо быстро убедиться, что с кабелем все хорошо, либо быстро выявить причину проблемы.

Сравнение кабельных тестеров CableMaster 600 и NetCat Pro NC-500

В следующей таблице приведено сравнение кабельных тестеров Softing CableMaster 600 и Greenlee NetCat Pro NC-500

Softing CableMaster 600 Greenlee NetCat Pro NC-500 Примечание
Измерение длины кабеля (каждой пары проводов). Проверка распиновки разъема RJ45. Цветное отображение всех проводников (CableMaster 600). Подтверждение целостности кабеля. Отображение удаленного идентификатора №1 (ID-1). Поддержка до 8-ми удаленных идентификаторов распиновки RJ45.
Тестирование возможности соединения с Ethernet. Технология: 10 Base-T, 100 Base-TX, 100 Base-T4, 1000 Base-T. Наличие PoE и пары, по которым подается питание. CableMaster 600 имеет дополнительные возможности: Распознавание стандарта PoE: IEEE 802.3af (до 12.95W), PoE+ IEEE 802.3at (до 25.5W), определения типа PoE: A или B. Испытание напряжения при мин. и макс. токовой нагрузке.
Измерение расстояния до обрыва кабеля. Измерение расстояния до обрыва пары. Вся информация на одном экране. Не требуется поочередный контроль длины каждой пары. Сохранение результатов теста (только у CableMaster 600)
Измерение расстояния до короткого замыкания. Технология измерения: по отраженному импульсу (TDR*). * Time Domain Reflectometer — рефлектометрия. Изменяемая скорость импульса для разного сечения жил.
Наглядная визуализация перепутанных проводов. Отображение ошибок монтажа разъёма.
Отображение расщепленной пары (Split pair*) *ошибка монтажа, при которой провода из двух разных пар объединены в «рабочую» пару по ошибке (провода не скручены). Не все тестеры способны обнаружить этот дефект.
Встроенный генератор тонального сигнала. Выбор пар (жил) по которым передавать сигнал. Отбор нужного кабеля из пучка. Идентификация нужного порта коммутатора. Трассировка кабеля в стене. Совместимость с любым широкополосным щупом-антенной.

Несколько слов о том, как именно измеряется длина кабеля. Измерение проводится с одной стороны линии. Удаленный идентификатор не обязателен, что очень удобно, если работаешь в одиночку. Тестер отправляет в линию импульс, который отражается от конца кабеля и возвращается назад в прибор. Автоматически вычисляется время прохождения сигнала в одну сторону. Далее остается только указать прибору скорость распространения импульса, и он легко рассчитает длину по простой формуле L = V * T (где L — расстояние, V — скорость импульса, T — время). Практически во всех приборах скорость импульса обозначается как NVP (Nominal Velocity of Propagation), или VOP (Velocity of Propagation). Эта величина зависит от категории витой пары и сечения проводника, соответственно может немного отличатся у похожих кабелей разных производителей.

Идеальный способ узнать NVP — это рассчитать его. Чтобы получить лучший результат, возьмите отрезок витой пары известной длины, но не менее 30 м. Измерьте его длину тестером. Если прибор показал неправильную длину кабеля, подстраивайте NVP и повторяйте замер, пока определяемая прибором длина не будет соответствовать действительности. В итоге вы определите скорость импульса для конкретного типа кабеля. Подробнее о том, что такое NVP и как его определить, читайте в этой статье. А для тех, кому некогда читать, скажем, что в тестере Greenlee NC-500 уже есть встроенная редактируемая таблица кабелей с соответствующими им коэффициентами, а у Softing CableMaster 600 она напечатана прямо на крышке батарейного отсека. Устройств, которые сами «понимают», какой кабель к ним подключили, не бывает.

Понравилась статья? Поделиться с друзьями: